百家乐玩法-网上百家乐官网哪家较安全

計(jì)算數(shù)學(xué)與控制系

博士后

SMBU

李玉萍

作者:    審核:    發(fā)布時(shí)間:2024-12-17    閱讀次數(shù):

李玉萍Yuping Li



Contact Information:

Postal address: Shenzhen MSU-BIT University, 1 International University Park Road, Longgang District, 518172 Shenzhen, Guangdong Province, P.R. China.

Office: Room 333, Main Building.

Email: 6420240112@smbu.edu.cn  liyuping_math@163.com



Educational Background

·2020.09 – 2024.06, Ph.D. in Mathematics, School of Science, Harbin Institute of Technology, Shenzhen, Supervisor: Prof. Hui Liang.

·2018.09 – 2020.06, M.S. in Computational Mathematics, School of Mathematics, Harbin Institute of Technology, Supervisor: Prof. Chiping Zhang.

·2014.09 – 2018.06, B.S. in Information and Computing Sciences, School of Science and Mathematics, Heilongjiang University.


Working Experience

·2024.09 – Present, Postdoctoral Fellowship, MSU-BIT-SMBU Joint Research Centre of Applied Mathematics, Shenzhen MSU-BIT University, Supervisor: Prof. Ye Zhang.

Research interests:

·Numerical methods for Volterra integral equations and integro-differential equations, Ill-posed inverse problems


Publications and Preprints:

[1].Yuping Li, Hui Liang, Huifang Yuan. Discontinuous Galerkin methods for the generalized auto-convolution Volterra integral equations. Advances in Applied Mathematics and Mechanics, 2024, accepted.

[2].Yuping Li, Hui Liang, Huifang Yuan. On the convergence of Galerkin methods for auto-convolution Volterra integro-differential equations. Numerical Algorithms, 2024, online.

DOI: https://doi.org/10.1007/s11075-024-01874-0

[3].Yuping Li, Hui Liang. Continuous piecewise polynomial collocation methods for generalized auto-convolution Volterra integral equations. Journal of Integral Equations and Applications, 2023. 35(1): 41-59. DOI:10.1216/jie.2023.35.41

[4].Yuping Li, Zhanwen Yang, Hui Liang. Analysis of collocation methods for a class of third-kind auto-convolution Volterra integral equations. Mathematics and Computers in Simulation, 2022, 199: 341-358. DOI: 10.1016/j.matcom.2022.03.026

[5].Yuping Li, Zhanwen Yang, Chiping Zhang. Theoretical and numerical analysis of third-kind auto-convolution Volterra integral equations. Computational & Applied Mathematics, 2019, 38(4) : 170, 1-17. DOI:10.1007/s40314-019-0954-x


關(guān)閉

地址:深圳市龍崗區(qū)大運(yùn)新城國(guó)際大學(xué)園路1號(hào)

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學(xué)版權(quán)所有 - 粵ICP備16056390號(hào) - 粵公網(wǎng)安備44030702002529號(hào)

返回頂部
至尊百家乐官网娱乐网| 百家乐官网怎么刷反水| 博狗投注| 百家乐官网真人娱乐城| 百家乐官网必胜密| 百家乐官网技巧方法| 金都百家乐官网的玩法技巧和规则| 上海玩百家乐算不算违法| 嘉年华百家乐的玩法技巧和规则| 莆田棋牌游戏下载| 百家乐官网百家乐官网伴侣 | 黄金百家乐官网的玩法技巧和规则| 百家乐桌子租| 大发888娱乐网下 | 鑫鑫百家乐官网的玩法技巧和规则| 太阳城现金| 百家乐官网网站哪个好| 真人百家乐官网游戏网| 百家乐官网的巧门| 百家乐大西洋城| 团风县| 帝王百家乐的玩法技巧和规则| 折式百家乐官网赌台| 新锦江百家乐官网赌场娱乐网规则 | 百家乐官网ag厅投注限额| 博狗玩百家乐好吗| 皇冠开户娱乐网| 百家乐官网赌场| 哪个百家乐玩法平台信誉好| 百家乐真人视频出售| 金臂百家乐官网注册送彩金| 百家乐赌的是心态吗| 百家乐官网赔率技巧| 百家乐规则澳门| 真人百家乐| 百家乐5式直缆打法| 金沙县| 百家乐那个平台信誉高| 巢湖市| 百家乐15人桌布| 全讯网程序|