百家乐玩法-网上百家乐官网哪家较安全

計(jì)算數(shù)學(xué)與控制系

副教授

SMBU

NIKITIN ALEXEY

作者:    審核:    發(fā)布時(shí)間:2021-07-20    閱讀次數(shù):

Nikitin Alexey Antonovich


Date of birth: 14 February 1983.

Address: Moscow.

Email: nikitin@cs.msu.ru, aanikitin@hse.ru

Marital status: married, two daughters, son.

I. Education

1. 2000 - 2005. Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

2. 2005 - 2008 postgraduate study, MSU, Computational Mathematics and Cybernetics department;

3. 2008 (april) Candidate of physical and mathematical Sciences, "Dierential equations"(01.01.02). Thesis topic: "The Third boundary condition in boundary control problems for the oscillation

equation".

II. Working Experience

1. from may 2008 to October 2013, assistant at the chair of General mathematics at Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

2. since October 2013, associate Professor of the chair of General mathematics at Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

3. since September 2009, associate Professor of the Department of Higher mathematics At the faculty of economic Sciences, Higher School of Economics;

III. Publications

1. Nikitin A. A. Boundary control of an elastic force at one end of a string // Doklady Mathematics. 2006. Vol. 73, no. 1. P. 77-79;

2. Nikitin A. A. Optimization of boundary control produced by the third boundary condition // Doklady Mathematics.  2007.  Vol. 76, no. 3. P. 945947;

3. Nikitin A. A. On the mixed problem for the wave equation with the third and rst boundary conditions // Dierential Equations.  2007.  Vol. 43, no. 12. P. 17331741;? Nikitin A. A. Boundary control of the third boundary // Automation and Remote Control. 2007.  Vol. 68, no. 2. P. 320326;

4. Nikitin A. A., Kuleshov A. A. Optimization of the boundary control induced by the third boundary condition // Dierential Equations.  2008.  Vol. 44, no. 5. P. 701711;

5. A. A. Davydov, V. I. Danchenko, and A. A. Nikitin, Integral equation for stationary distributions of biological communities, Problems of Dynamic Control (Fak. Vychisl. Mat. Mat. Fiz. Mosk. Gos. Univ., Moscow, 2009), pp. 1529 [in Russian];

6. Nikitin A. A. Optimal boundary control of string vibrations by a force under elastic xing // Dierential Equations.  2011.  Vol. 47, no. 12. P. 17961805;

7. Nikitin A. A. On the existence and uniqueness of a generalized solution of the mixed problem for the wave equation with the second and third boundary conditions // Dierential Equations.  2013.  Vol. 49, no. 5. P. 645653;

8. On an Optimal Control Problem for the Wave Equation in One Space Dimension Controlled by Third Type Boundary Data // Progress in Partial Dierential Equations, Springer Proceedings in Mathematics & Statistics, chapter 10, april, 2013, p.223-238;

9. Bodrov A. G., Nikitin A. A. Qualitative and numerical analysis of an integral equation arising in a model of stationary communities // Doklady Mathematics.  2014. Vol. 89,

no. 2. P. 210213;

10. Bodrov A. G., Nikitin A. A. Examining the biological species steady-state density equation in spaces with dierent dimensions // Moscow University Computational Mathematics and Cybernetics.  2015.  Vol. 39, no. 4. P. 157162;

11. Kalistratova A. V., Nikitin A. A. Study of Dieckmann's equation with integral kernels having variable kurtosis coe?cient // Doklady Mathematics.  2016.  Vol. 94, no. 2.  P. 574577;

12. Nikitin A. A., Savostianov A. S. Nontrivial stationary points of two-species self-structuring communities // Moscow University Computational Mathematics and Cybernetics. 2017.

 Vol. 41, no. 3. P. 122129;

13. Nikitin A. A., On the closure of spatial moments in the biological model, and the integral equations to which it leads // International Journal of Open Information Technologies.  2018.  ò. 6, ? 10.  ?. 18;

14. Nikitin A. A., Nikolaev M. V. Equilibrium integral equations with kurtosian kernels in spaces of various dimensions // Moscow University Computational Mathematics and Cybernetics. 2018.  Vol. 42, no. 3. P. 105113;? Nikolaev M. V., Nikitin A. A. The Leray-Schauder principle applied to the study of a nonlinear integral equation // Dierential Equations.  2019.  Vol. 55, no. 9. P. 11641173.

15. Nikolaev M. V., Nikitin A. A. On the existence and uniqueness of the solution of a nonlinear integral equation // Doklady Mathematics.  2019.  Vol. 100, no. 2. P. 485487.

16. Galkin E. G., Zelenkov V. K., Nikitin A. A. Computer simulations and numerical methods in two-species models of the spatial community // International Journal of Open Information Technologies.  2019.  Vol. 7, no. 12. P. 1823;

17. Galkin E. G., Nikitin A. A. Stochastic geometry for population-dynamic modeling: A Dieckmann model with immovable individuals // Moscow University Computational Mathematics and Cybernetics.  2020.  Vol. 44, no. 2. P. 6168.

18. Karpov A. D., Klepov V. Y., Nikitin A. A. On mathematical visualization in education // Communications in Computer and Information Science.  2020.  Vol. 1140, no. 1. P. 1127; Participant of several dozens of International and all-Russian congresses and seminars on topics related to optimal control, dierential equations in ordinary and partial derivatives, and mathematical

modeling.

IV. Professional interests

1. Optimal control of dynamic systems;

2. Mathematical biology;

3. The problems of scientometrics;

4. Problems of mathematical education, information technologies in higher education;

關(guān)閉

地址:深圳市龍崗區(qū)大運(yùn)新城國際大學(xué)園路1號

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學(xué)版權(quán)所有 - 粵ICP備16056390號 - 粵公網(wǎng)安備44030702002529號

返回頂部
真人百家乐作| 百家乐官网赌机厂家| 百家乐官网微笑打法| 大赢家百家乐官网娱乐| 百家乐5式直缆投注法| 百家乐游戏试| 香港六合彩管家婆| 至尊百家乐官网facebook| bet365备用网址器| 百家乐官网怎么开户| 梦幻城百家乐官网的玩法技巧和规则 | 大发888代理平台| 罗平县| 帝王百家乐官网的玩法技巧和规则| 大发888更名网址| 百家乐官网博彩金| sz全讯网新2xb112| 百家乐官网庄9点| 视频百家乐游戏| 金尊娱乐| 哪个百家乐最好| 中华德州扑克协会| 最新百家乐官网出千赌具| 百家乐翻天在线观看| 百家乐官网发牌器8副| 澳门博彩业| 百家乐官网服务区| 至尊百家乐赌场娱乐网规则| 理塘县| 百家乐最新首存优惠| 德州扑克qq| 米其林百家乐官网的玩法技巧和规则| 可以玩百家乐的博彩网站| 百家乐官网龙虎| 顶级赌场官方直营| 百家乐信誉博彩公司| 百家乐官网娱乐官方网| 百家乐无损打法| 兄弟百家乐官网的玩法技巧和规则| 百家乐官网视频百家乐官网| 威尼斯人娱乐城求助|