百家乐玩法-网上百家乐官网哪家较安全

計(jì)算數(shù)學(xué)與控制系

副教授

SMBU

NIKITIN ALEXEY

作者:    審核:    發(fā)布時(shí)間:2021-07-20    閱讀次數(shù):

Nikitin Alexey Antonovich


Date of birth: 14 February 1983.

Address: Moscow.

Email: nikitin@cs.msu.ru, aanikitin@hse.ru

Marital status: married, two daughters, son.

I. Education

1. 2000 - 2005. Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

2. 2005 - 2008 postgraduate study, MSU, Computational Mathematics and Cybernetics department;

3. 2008 (april) Candidate of physical and mathematical Sciences, "Dierential equations"(01.01.02). Thesis topic: "The Third boundary condition in boundary control problems for the oscillation

equation".

II. Working Experience

1. from may 2008 to October 2013, assistant at the chair of General mathematics at Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

2. since October 2013, associate Professor of the chair of General mathematics at Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

3. since September 2009, associate Professor of the Department of Higher mathematics At the faculty of economic Sciences, Higher School of Economics;

III. Publications

1. Nikitin A. A. Boundary control of an elastic force at one end of a string // Doklady Mathematics. 2006. Vol. 73, no. 1. P. 77-79;

2. Nikitin A. A. Optimization of boundary control produced by the third boundary condition // Doklady Mathematics.  2007.  Vol. 76, no. 3. P. 945947;

3. Nikitin A. A. On the mixed problem for the wave equation with the third and rst boundary conditions // Dierential Equations.  2007.  Vol. 43, no. 12. P. 17331741;? Nikitin A. A. Boundary control of the third boundary // Automation and Remote Control. 2007.  Vol. 68, no. 2. P. 320326;

4. Nikitin A. A., Kuleshov A. A. Optimization of the boundary control induced by the third boundary condition // Dierential Equations.  2008.  Vol. 44, no. 5. P. 701711;

5. A. A. Davydov, V. I. Danchenko, and A. A. Nikitin, Integral equation for stationary distributions of biological communities, Problems of Dynamic Control (Fak. Vychisl. Mat. Mat. Fiz. Mosk. Gos. Univ., Moscow, 2009), pp. 1529 [in Russian];

6. Nikitin A. A. Optimal boundary control of string vibrations by a force under elastic xing // Dierential Equations.  2011.  Vol. 47, no. 12. P. 17961805;

7. Nikitin A. A. On the existence and uniqueness of a generalized solution of the mixed problem for the wave equation with the second and third boundary conditions // Dierential Equations.  2013.  Vol. 49, no. 5. P. 645653;

8. On an Optimal Control Problem for the Wave Equation in One Space Dimension Controlled by Third Type Boundary Data // Progress in Partial Dierential Equations, Springer Proceedings in Mathematics & Statistics, chapter 10, april, 2013, p.223-238;

9. Bodrov A. G., Nikitin A. A. Qualitative and numerical analysis of an integral equation arising in a model of stationary communities // Doklady Mathematics.  2014. Vol. 89,

no. 2. P. 210213;

10. Bodrov A. G., Nikitin A. A. Examining the biological species steady-state density equation in spaces with dierent dimensions // Moscow University Computational Mathematics and Cybernetics.  2015.  Vol. 39, no. 4. P. 157162;

11. Kalistratova A. V., Nikitin A. A. Study of Dieckmann's equation with integral kernels having variable kurtosis coe?cient // Doklady Mathematics.  2016.  Vol. 94, no. 2.  P. 574577;

12. Nikitin A. A., Savostianov A. S. Nontrivial stationary points of two-species self-structuring communities // Moscow University Computational Mathematics and Cybernetics. 2017.

 Vol. 41, no. 3. P. 122129;

13. Nikitin A. A., On the closure of spatial moments in the biological model, and the integral equations to which it leads // International Journal of Open Information Technologies.  2018.  ò. 6, ? 10.  ?. 18;

14. Nikitin A. A., Nikolaev M. V. Equilibrium integral equations with kurtosian kernels in spaces of various dimensions // Moscow University Computational Mathematics and Cybernetics. 2018.  Vol. 42, no. 3. P. 105113;? Nikolaev M. V., Nikitin A. A. The Leray-Schauder principle applied to the study of a nonlinear integral equation // Dierential Equations.  2019.  Vol. 55, no. 9. P. 11641173.

15. Nikolaev M. V., Nikitin A. A. On the existence and uniqueness of the solution of a nonlinear integral equation // Doklady Mathematics.  2019.  Vol. 100, no. 2. P. 485487.

16. Galkin E. G., Zelenkov V. K., Nikitin A. A. Computer simulations and numerical methods in two-species models of the spatial community // International Journal of Open Information Technologies.  2019.  Vol. 7, no. 12. P. 1823;

17. Galkin E. G., Nikitin A. A. Stochastic geometry for population-dynamic modeling: A Dieckmann model with immovable individuals // Moscow University Computational Mathematics and Cybernetics.  2020.  Vol. 44, no. 2. P. 6168.

18. Karpov A. D., Klepov V. Y., Nikitin A. A. On mathematical visualization in education // Communications in Computer and Information Science.  2020.  Vol. 1140, no. 1. P. 1127; Participant of several dozens of International and all-Russian congresses and seminars on topics related to optimal control, dierential equations in ordinary and partial derivatives, and mathematical

modeling.

IV. Professional interests

1. Optimal control of dynamic systems;

2. Mathematical biology;

3. The problems of scientometrics;

4. Problems of mathematical education, information technologies in higher education;

關(guān)閉

地址:深圳市龍崗區(qū)大運(yùn)新城國際大學(xué)園路1號

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學(xué)版權(quán)所有 - 粵ICP備16056390號 - 粵公網(wǎng)安備44030702002529號

返回頂部
百家乐扑克牌耙| 游艇会百家乐官网的玩法技巧和规则| 大发888真钱游戏下载到桌面| 百家乐官网赌博博彩赌博网| 大发888 3403| 百家乐不倒翁注码| 网络百家乐官网骗局| bet365 备用| 百家乐技巧-百家乐开户指定代理网址 | 百家乐官网翻天qvod粤语| 德州扑克明星| 百家乐娱乐网会员注册| 筹码百家乐官网的玩法技巧和规则 | 百家乐有没有绝| 百家乐官网路单免费下载| 大发888加盟合作| 百家乐五湖四海娱乐平台| 百家乐官网游戏方法| 三原县| 永利高娱乐城| 百家乐网投注| 百家乐全讯网2| 宝马会百家乐官网的玩法技巧和规则| 易发娱乐场| 大发888下载df888| 百家乐游戏技巧| 百家乐交流群号| 新花园百家乐官网的玩法技巧和规则 | 做生意门口朝向| 百家乐官网龙虎扑克| 百家乐官网人生信条漫谈| 乐透世界娱乐城| 德州扑克哪个平台好| 大发888娱乐城 bg| 太阳城投诉| 百家乐玩法最多的娱乐城| 百家乐里面的奥妙| 百家乐2号干扰| 百家乐下注的规律| 网络百家乐免费试玩| 百家乐的关键技巧|