百家乐玩法-网上百家乐官网哪家较安全

深北莫新聞

首頁 > 深北莫新聞 > 新聞動態 > 正文

新聞動態

SMBU

深北莫計算數學與控制系教師駱泳銘在權威期刊Journal of Functional Analysis發表論文

作者:計算數學與控制系    審核:新聞中心    發布時間:2024-08-26    閱讀次數:

近日,深圳北理莫斯科大學計算數學與控制系高級講師駱泳銘以獨立作者身份在期刊Journal of Functional Analysis(泛函分析雜志)上發表了題為“Almost sure scattering for the defocusing cubic nonlinear Schr?dinger equation on R3T1”的學術論文。Journal of Functional Analysis是數學領域國內外公認的權威期刊,致力于發表高水平原創性成果,具有較高的學術聲譽。

在這篇文章中,駱泳銘對散焦立方非線性薛定諤方程(Defocusing cubic nonlinear Schr?dinger equation)在半周期空間R3T1上的隨機初值問題進行了研究。研究這一問題的難點在于半周期空間的部分周期性質限制了介質粒子向無窮空間的逃逸,因此經典的適用于歐氏空間的維納隨機化不能保證該方程在半周期空間上的幾乎處處散射。駱泳銘通過構造一類新的隨機初值,證明了在非隨機情況下得到的該模型的大初值散射結果在隨機情況下依然幾乎處處成立。此外,這篇文章也給出了混合空間上非線性薛定諤方程的首個幾乎處處散射結果。


關閉

地址:深圳市龍崗區大運新城國際大學園路1號

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學版權所有 - 粵ICP備16056390號 - 粵公網安備44030702002529號

返回頂部
至尊百家乐官网qvod| 百家乐最新缆| 百家乐官网博彩网址| 百胜滩| 赌百家乐官网可以赢钱| 大发888更名网址62| 路虎百家乐官网的玩法技巧和规则 | 24山向中那个向最好| 网络百家乐棋牌| 百家乐官网注册开户送现金 | 正规百家乐官网游戏下载| 大发888娱乐场下载新澳博| 淘金百家乐官网的玩法技巧和规则| 菲律宾在线游戏| 威尼斯人娱乐城送彩金| 网上百家乐赌场| 百家乐官网国际娱乐场| 赌博百家乐官网的路单| 大发888 现金棋牌游戏| 新百家乐的玩法技巧和规则| 做生意必须看风水吗| 百家乐官网顺序| 玩百家乐官网去哪个平台好| 嘉祥县| 365棋牌游戏| 新全讯网xb112| 赌博百家乐的玩法技巧和规则 | 百家乐官网反缆公式| 环球百家乐现金网| 至尊百家乐官网娱乐网| 百家乐官网博娱乐网| 天天百家乐官网的玩法技巧和规则| 适合属虎做生意的名字| 百家乐之三姐妹赌博机| 金沙城百家乐大赛规则| 百家乐道具扫描| 立博百家乐游戏| 20人百家乐官网桌| G3百家乐的玩法技巧和规则| 木棉百家乐网络| 大发888真钱官网|