百家乐玩法-网上百家乐官网哪家较安全

計(jì)算數(shù)學(xué)與控制系

副教授

SMBU

NIKITIN ALEXEY

作者:    審核:    發(fā)布時(shí)間:2021-07-20    閱讀次數(shù):

Nikitin Alexey Antonovich


Date of birth: 14 February 1983.

Address: Moscow.

Email: nikitin@cs.msu.ru, aanikitin@hse.ru

Marital status: married, two daughters, son.

I. Education

1. 2000 - 2005. Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

2. 2005 - 2008 postgraduate study, MSU, Computational Mathematics and Cybernetics department;

3. 2008 (april) Candidate of physical and mathematical Sciences, "Dierential equations"(01.01.02). Thesis topic: "The Third boundary condition in boundary control problems for the oscillation

equation".

II. Working Experience

1. from may 2008 to October 2013, assistant at the chair of General mathematics at Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

2. since October 2013, associate Professor of the chair of General mathematics at Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

3. since September 2009, associate Professor of the Department of Higher mathematics At the faculty of economic Sciences, Higher School of Economics;

III. Publications

1. Nikitin A. A. Boundary control of an elastic force at one end of a string // Doklady Mathematics. 2006. Vol. 73, no. 1. P. 77-79;

2. Nikitin A. A. Optimization of boundary control produced by the third boundary condition // Doklady Mathematics.  2007.  Vol. 76, no. 3. P. 945947;

3. Nikitin A. A. On the mixed problem for the wave equation with the third and rst boundary conditions // Dierential Equations.  2007.  Vol. 43, no. 12. P. 17331741;? Nikitin A. A. Boundary control of the third boundary // Automation and Remote Control. 2007.  Vol. 68, no. 2. P. 320326;

4. Nikitin A. A., Kuleshov A. A. Optimization of the boundary control induced by the third boundary condition // Dierential Equations.  2008.  Vol. 44, no. 5. P. 701711;

5. A. A. Davydov, V. I. Danchenko, and A. A. Nikitin, Integral equation for stationary distributions of biological communities, Problems of Dynamic Control (Fak. Vychisl. Mat. Mat. Fiz. Mosk. Gos. Univ., Moscow, 2009), pp. 1529 [in Russian];

6. Nikitin A. A. Optimal boundary control of string vibrations by a force under elastic xing // Dierential Equations.  2011.  Vol. 47, no. 12. P. 17961805;

7. Nikitin A. A. On the existence and uniqueness of a generalized solution of the mixed problem for the wave equation with the second and third boundary conditions // Dierential Equations.  2013.  Vol. 49, no. 5. P. 645653;

8. On an Optimal Control Problem for the Wave Equation in One Space Dimension Controlled by Third Type Boundary Data // Progress in Partial Dierential Equations, Springer Proceedings in Mathematics & Statistics, chapter 10, april, 2013, p.223-238;

9. Bodrov A. G., Nikitin A. A. Qualitative and numerical analysis of an integral equation arising in a model of stationary communities // Doklady Mathematics.  2014. Vol. 89,

no. 2. P. 210213;

10. Bodrov A. G., Nikitin A. A. Examining the biological species steady-state density equation in spaces with dierent dimensions // Moscow University Computational Mathematics and Cybernetics.  2015.  Vol. 39, no. 4. P. 157162;

11. Kalistratova A. V., Nikitin A. A. Study of Dieckmann's equation with integral kernels having variable kurtosis coe?cient // Doklady Mathematics.  2016.  Vol. 94, no. 2.  P. 574577;

12. Nikitin A. A., Savostianov A. S. Nontrivial stationary points of two-species self-structuring communities // Moscow University Computational Mathematics and Cybernetics. 2017.

 Vol. 41, no. 3. P. 122129;

13. Nikitin A. A., On the closure of spatial moments in the biological model, and the integral equations to which it leads // International Journal of Open Information Technologies.  2018.  ò. 6, ? 10.  ?. 18;

14. Nikitin A. A., Nikolaev M. V. Equilibrium integral equations with kurtosian kernels in spaces of various dimensions // Moscow University Computational Mathematics and Cybernetics. 2018.  Vol. 42, no. 3. P. 105113;? Nikolaev M. V., Nikitin A. A. The Leray-Schauder principle applied to the study of a nonlinear integral equation // Dierential Equations.  2019.  Vol. 55, no. 9. P. 11641173.

15. Nikolaev M. V., Nikitin A. A. On the existence and uniqueness of the solution of a nonlinear integral equation // Doklady Mathematics.  2019.  Vol. 100, no. 2. P. 485487.

16. Galkin E. G., Zelenkov V. K., Nikitin A. A. Computer simulations and numerical methods in two-species models of the spatial community // International Journal of Open Information Technologies.  2019.  Vol. 7, no. 12. P. 1823;

17. Galkin E. G., Nikitin A. A. Stochastic geometry for population-dynamic modeling: A Dieckmann model with immovable individuals // Moscow University Computational Mathematics and Cybernetics.  2020.  Vol. 44, no. 2. P. 6168.

18. Karpov A. D., Klepov V. Y., Nikitin A. A. On mathematical visualization in education // Communications in Computer and Information Science.  2020.  Vol. 1140, no. 1. P. 1127; Participant of several dozens of International and all-Russian congresses and seminars on topics related to optimal control, dierential equations in ordinary and partial derivatives, and mathematical

modeling.

IV. Professional interests

1. Optimal control of dynamic systems;

2. Mathematical biology;

3. The problems of scientometrics;

4. Problems of mathematical education, information technologies in higher education;

關(guān)閉

地址:深圳市龍崗區(qū)大運(yùn)新城國際大學(xué)園路1號

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學(xué)版權(quán)所有 - 粵ICP備16056390號 - 粵公網(wǎng)安備44030702002529號

返回頂部
百家乐官网智能分析软| 鄯善县| 百家乐赌博论坛在线| 棋牌小游戏| 电子百家乐官网破| 百家乐官网怎么才能包赢| 红树林百家乐的玩法技巧和规则| 百家乐官网娱乐城信息| 广州百家乐牌具公司| 克拉克娱乐城| 百家乐有真假宝单吗| 白金国际| 真钱百家乐五湖四海全讯网| 百家乐官网技术下载| 百家乐注册开户送现金| 大发888娱乐客户端| 明溪百家乐官网的玩法技巧和规则 | 五寨县| 百家乐公式软件| 如何看百家乐官网路| 大发888大发888官方| 饿火命适合做生意吗| 百家乐官网投注方式| 网络百家乐玩法| 菲律百家乐官网太阳城| 大发888娱乐城打发888打发8| 百家乐官网平台注册| 香港六合彩结果| 红桃K百家乐官网娱乐城| 爱博彩到天上人间| 稳赢百家乐的玩法技巧| 聚众玩百家乐官网的玩法技巧和规则| 博彩网导航| 新濠百家乐娱乐城 | 缅甸百家乐官网娱乐场开户注册 | 百家乐官网娱乐城公司| 威尼斯人娱乐网上百家乐的玩法技巧和规则 | 百家乐韩泰阁| 百家乐官网游戏机分析仪| 大发888yulecheng| 百家乐前四手下注之观点|